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Introduction
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of  chronic liver disease in the Western 
world (1, 2). NAFLD can progress to nonalcoholic steatohepatitis (NASH) (3) and approximately 40% 
of  NASH patients inevitably develop severe complications such as fibrosis, cirrhosis, and hepatocellular 
carcinoma (1, 2). NAFLD and NASH are probably not 2 distinct diseases, but rather a continuum char-
acterized by a progressive inflammatory response. However, the etiology underlying this progression and 
ultimately the development of  fibrosis, a major determinant of  mortality (2), remains largely unclear. It is 
worth noticing that there is not one single drug approved by the Food and Drug Administration (FDA) or 
European Medicines Agency (EMA) for the treatment of  NASH.

Previous mouse studies suggest a role of CD4+ T cells in the inflammatory progression from NAFLD to 
NASH (4, 5). Human studies associated the frequency of different CD4+ T cell populations, such as Th1, Th2, 
Th17, and Foxp3+ Treg cells to the immunopathogenesis of NASH (6–8). While these previous studies provided  
fundamental indications for the potential role of CD4+ T cells in NASH, they were based on a supervised 
analysis that classifies CD4+ T cells on the basis of a small number of preselected cytokines. Therefore, these 
studies did not fully describe the complexity of human T cell biology and their potential implication in NASH.

A role of CD4+ T cells during the progression from nonalcoholic fatty liver disease (NAFLD) to 
nonalcoholic steatohepatitis (NASH) has been suggested, but which polarization state of these 
cells characterizes this progression and the development of fibrosis remain unclear. In addition, 
a gut-liver axis has been suggested to play a role in NASH, but the role of CD4+ T cells in this axis 
has just begun to be investigated. Combining single-cell RNA sequencing and multiple-parameter 
flow cytometry, we provide the first cell atlas to our knowledge focused on liver-infiltrating CD4+ 
T cells in patients with NAFLD and NASH, showing that NASH is characterized by a population 
of multicytokine-producing CD4+ T cells. Among these cells, only those with a Th17 polarization 
state were enriched in patients with advanced fibrosis. In parallel, we observed that Bacteroides 
appeared to be enriched in the intestine of NASH patients and to correlate with the frequency 
of multicytokine-producing CD4+ T cells. In short, we deliver a CD4+ T cell atlas of NAFLD and 
NASH, providing the rationale to target CD4+ T cells with a Th17 polarization state to block fibrosis 
development. Finally, our data offer an early indication to test whether multicytokine-producing 
CD4+ T cells are part of the gut-liver axis characterizing NASH.
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It is known that CD4+ T cell composition and function can be altered by the intestinal microbiota (9). 
There is increasing evidence not only that the intestinal microbiota might influence intrahepatic T cells, but 
also that it plays a crucial role in the pathogenesis of  liver diseases, including NASH (10–12). By profiling 
the stool microbiome, it was shown that the abundance of  some bacteria, such as Bacteroides, was more 
elevated in NASH patients than in healthy individuals (12, 13). Moreover, bacterial DNA was found in the 
liver of  NAFLD patients (14) and the liver microbial composition differed between morbidly obese and 
non–morbidly obese NAFLD patients (14).

On the basis of  all this, a connection between the intestine and the liver, i.e., the gut-liver axis, has 
been proposed for the progression from NAFLD to NASH. However, a study analyzing the immune 
system and the tissue-specific microbiota composition within the same patient cohort remains to be 
performed. Besides this, previous studies were limited in that they compared either NASH or NAFLD 
patients with healthy individuals and were thus unable to describe the developmental spectrum covering 
NAFLD to NASH progression (12–14).

Here, combining single-cell RNA sequencing (scRNA-seq), multiple-parameter flow cytomet-
ric analysis, and tissue-derived microbiome sequencing from liver and intestinal samples, our study 
reveals the complete CD4+ T cell landscape and the microbial composition in liver and intestine of  
NAFLD and NASH patients.

Results
Characterization of  8 distinct subsets of  liver-infiltrating CD4+ T cells in NAFLD patients. To describe CD4+ 
T cells infiltrating the liver of  NAFLD patients in detail, we performed scRNA-seq (n = 4421 cells) on 
FACS-isolated memory CD45RA–CD4+ T cells isolated from 3 NAFLD patients (Figure 1A, Supple-
mental Figure 1A, and Supplemental Table 1; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.153831DS1). An unsupervised analysis revealed 8 distinct T cell 
clusters, which were annotated by examining the most differentially expressed genes and comparing our 
data set to standard markers used in flow cytometry and already existing sequencing data of  cells in the 
liver (15–19) (Figure 1B). We found populations of  CD4+ T cells with either a Th1 (IFNG) or a Th17 
(IL17A, RORA) polarization state. Of  note, CD4+ T cells with a Th17 polarization state expressed both 
RORA and RORC, as previously reported (20). We also found cells with transcriptomes resembling 
those of  antiinflammatory type 1 Treg (Tr1: IL10, TIGIT, LAG-3, CTLA4) and Foxp3+ Treg (FOXP3, 
CTLA4, IL2RA) cells. Central memory cells (CCR7, SELL), heat shock protein–positive (HSP)+ cells, 
and cytotoxic (GNLY, PRF1) cells were also identified. Finally, we found a small contamination of  
Kupffer cells (CD163, CD14) (Figure 1, B and C).

Regarding the central memory cells, we found 2 distinct cell populations. Central memory cell pop-
ulation 2 showed a less active cell signature, expressing high levels of  SELL, CD7, CCR7, and LEF1 (21) 
compared with population 1, which was characterized by high expression of  TNFRSF4, KLRB1, IL32, and 
RORA (Figure 1D), suggesting active memory cells with possible proinflammatory activity. We did not iden-
tify distinct cell clusters resembling Th2, Th9, and T follicular helper cell (Tfh) polarization states. By per-
forming a supervised analysis looking for key markers, we found that few cells expressed IL4, some BCL6 
but simultaneously not CXCR5, and none IL9. GATA3 was expressed at moderate levels on virtually all the 
cells (Supplemental Figure 1B). The low resolution of  the scRNA-seq could explain these findings and these 
data do not exclude the presence of  Th2, Th9, and Tfh polarization states in the liver of  NAFLD patients.

Besides circulating central memory and effector memory cells, tissue-resident memory (Trm) cells 
play a crucial role in orchestrating both protective and pathological tissue-specific immune responses (22, 
23). Therefore, we wondered which of  the above-mentioned populations of  CD4+ T cells display a Trm 
transcriptomic signature. By using a literature-curated Trm signature score (24) that we recently validated  
(25), we observed that the Th cell clusters, namely Th1, Th17, and Tr1, were enriched for the Trm gene 
signature (Figure 1E). This suggests that cells with a Trm-like signature comprise a heterogeneous group 
of  Th cell subsets, probably reflecting their effector precursors.

It has been shown that a distinct polarized CD4+ T cell subset, such as Th17, might acquire the pheno-
type of  another subset such as Th1 or Tr1 (26–28). To further investigate this in our liver CD4+ T cell sub-
sets, we first performed a subclustering analysis of  Th1, Tr1, and Th17 cells. We found 6 different subclus-
ters reflecting different cell states (Figure 1F and Supplemental Figure 1C) with combined Th1, Tr1, and 
Th17 features and partial overlap between the different states. Next, we inferred differentiation cell states 
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Figure 1. scRNA-seq of CD4+ T cells found in the liver of NAFLD patients. (A) Schematic of experimental setup: FACS-isolated CD45RA–CD4+ T cells 
(CD4+ T cells) from liver tissue of NAFLD patients were processed for scRNA-seq. (B) t-SNE plot of the unsupervised clustering of CD4+ T cells. (C) 
Heatmap of CD4+ T cell clusters displaying key signature genes to annotate the different clusters. CM1 and CM2, central memory populations 1 and 2. 
(D) Violin plots comparing the most differentially expressed genes between the central memory clusters. (E) Expression of the tissue-resident mem-
ory T cell (Trm) gene signature score of the indicated clusters of human CD4+ T cells. (F) t-SNE plot of the subclustering of Tr1, Th1, and Th17 clusters. 
(G) PCA plot of slingshot pseudotime developmental trajectory analysis.
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by performing 2 distinct trajectory analyses (i.e., Slingshot and Monocle 3) (Figure 1G and Supplemental 
Figure 1, D and E). Both analyses revealed a potential cell trajectory connecting Th17 and Th1 and further 
Tr1 cell states. Hence, we postulate that some of  these Th cells, characterized by a Trm gene signature, 
might represent a unique cellular spectrum composed of  different cellular states.

Overall, our analysis reveals the landscape of  the CD4+ T cell populations in the liver of  NAFLD 
patients, including 1 population of  cytotoxic effector memory T cells, 2 distinct central memory populations, 
and Trm-like cells characterized by a continuum of  different cell states, namely Th1, Th17, and Tr1 cells.

Characterization of  8 distinct subsets of  liver-infiltrating CD4+ T cells in NASH patients. Next, we wondered whether  
the above-mentioned populations of liver CD4+ T cells were specific to NAFLD patients or also present in 
NASH. Therefore, we performed scRNA-seq (n = 6435) on CD45RA−CD4+ T cells isolated by FACS from 
the liver of 3 NASH patients (Figure 2A and Supplemental Table 1) and identified 8 different T cell clusters.

Among these cell clusters, we found CD4+ T cells with Th1, Th1/Th17, and Tr1 polarization states 
and Foxp3+ Treg cells (Figure 2, B and C). The cell clusters were annotated as described above for the 
NAFLD data set.

In addition, our analysis revealed 4 different clusters of  central memory cells, all expressing SELL and 
CCR7. The central memory cell populations 1 and 3 showed higher expression of  JUN and FOS, and in 
addition, population 3 showed the lowest expression of  TXNIP, suggesting that these 4 populations might 
reflect different activation states of  central memory cells (Figure 2D). In accordance with the NAFLD map, 
we did not identify specific clusters corresponding to Th2, Th9, or Tfh subsets (Supplemental Figure 2A). 
Using the Trm gene signature score, we observed that CD4+ T cells with Th1, Th1/Th17, and Tr1 polar-
ization states had the highest relative expression score compared with the other cell cluster (Figure 2E).

To further characterize potential transitional cell states, we subclustered the Th1, Th1/Th17, and Tr1 
clusters and identified 6 different subpopulations (Figure 2F and Supplemental Figure 2B) and again, found 
partial overlap between the different states. However, in contrast to the NAFLD map, both pseudotime 
analyses showed more chaotic paths with different potential cellular endpoints, including the potentially 
cytotoxic Tr1 subcluster 3 (IL10, TIGIT, GZMH, GZMB, PRF1, GZMK) (Figure 2G and Supplemental 
Figure 2, C and D). These chaotic paths suggest that a less delineated T effector cell trajectory is present in 
NASH compared with NAFLD patients.

Differences revealed between liver CD4+ T cells in NAFLD and NASH patients. To further investigate dif-
ferences between NAFLD and NASH, we decided to integrate in 1 analysis the 2 CD4+ T cell data sets. 
We found that each cluster contained cells from NASH and NAFLD patients and nearly all clusters 
were equally represented by all specimens and proportionally distributed across patients (Figure 3A and 
Supplemental Figure 3, A and B).

Next, we wondered whether the transcriptional profiles of these cell clusters were different between 
NAFLD and NASH. Differential gene expression analysis of IL-10–producing Foxp3–CD4+ T cells — referred 
to so far as Tr1 cells — revealed that IL10 was more highly expressed in the cells from the NAFLD patients, 
while the chemokine receptor gene CXCR3 was significantly overexpressed in IL-10–producing Foxp3–CD4+  
T cells derived from NASH patients (Figure 3B). Of note, CXCR3 was shown to be associated with over-
production of cytokines (29). In line with that, our recently published data show that IL-10–producing  
Foxp3–CD4+ T cells are a functionally heterogeneous population of cells with both antiinflammatory function 
and potential pathogenic activity (16). Therefore, we created a Tr1 score based on our previously published 
data (16) and found that the IL-10–producing Foxp3–CD4+ T cells in NASH had a lower Tr1 score compared 
with those in the liver of NAFLD patients (Supplemental Figure 3C). This suggests an enrichment of non-Tr1 
IL-10–producing Foxp3–CD4+ T cells in NASH.

Next, we focused on the CD4+ T cells with a Th17 cell polarization state, since these cells have been 
suggested to play a role in NASH development (6, 30). We therefore performed a differential gene expres-
sion analysis of  these cells between NAFLD and NASH. IL23R, IL32, and CD74 were upregulated in the 
cells isolated from NASH patients compared with those from NAFLD, suggesting a possible proinflam-
matory Th17 cell state in NASH patients (Figure 3B). Moreover, when the differential gene expression 
analysis was also performed on other cell clusters, including Th1 and Foxp3+ Treg cells, we observed that 
CD74 was more highly expressed in the cells isolated from NASH patients compared with NAFLD patients 
(Supplemental Figure 3D and Supplemental Table 2). To validate this finding, we extended our analysis to 
25 NAFLD and 32 NASH patients by testing CD74 expression by qPCR analysis. We found that the expres-
sion of  CD74 overall was significantly higher in NASH patients (Figure 3C).
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Next, since Th1, Th17, and Th1/Th17 polarization cell states displayed a Trm gene signature in 
both NAFLD and NASH, we compared their score across the 2 liver diseases. We found a higher 
expression of  the Trm transcriptomic signature in the liver cells isolated from the NAFLD patients 
(Figure 3D).

In order to validate these findings, we performed flow cytometric analysis and confirmed the enrich-
ment of  CD69+CD4+ T cells in NAFLD patients (Figure 3E and Supplemental Figure 3E). CD69 is one of  
the most utilized markers of  Trm cells (31). Despite the limitation of  being influenced by cell stimulation, 
together with our scRNA-seq analysis, these data suggest that a higher concentration of  cells with a Trm-
like phenotype are present in the liver of  NAFLD patients.

In addition to this, we found that CD4+ T cells with Th1 and Th17 polarization states isolated from the 
liver of  the NASH patients expressed some of  the intestine-related chemokine and integrin genes such as 
CCR6, CCR9, and ITGA4 (Supplemental Figure 3F). Whether this indicates a liver-intestine migration of  
the T cells remains to be determined.

To further confirm our findings, we performed an integrated analysis using a published scRNA-seq liver 
data set that includes heathy liver–derived T cells (19). After integrating our data set with the published data 
set, we first recognized the same clusters of  CD4+ T cells, and secondly, when we compared the Trm score 
across healthy, NAFLD, and NASH conditions we confirmed that CD4+ T cells with Th1 and Th17 polar-
ization states isolated from NASH patients had the lowest score (Supplemental Figure 4, A–D).

Finally, since our differential gene expression analysis of  Tr1 and Th17 cells revealed genes connected  
with the activation of  T cells and an increase in cytokine production, such as CXCR3, IL23R, and CD74, 
we analyzed our single-cell sequencing data set for the frequency of  cytokine-producing CD4+ T cells. 
Despite the fact that the low number of  patients did not allow us to perform a statistical test, it appeared 
that a higher percentage of  cells coexpressing a combination of  TNF, IFNG, IL17A, and IL10 (Figure 3F) 
was present in NASH compared with NAFLD.

In conclusion, we found that NASH-derived IL-10–producing Foxp3–CD4+ T cells and CD4+ T cells 
with a Th17 cell polarization state were characterized by a nonregulatory transcriptional profile and a more 
pathogenic gene signature, respectively. In addition, CD4+ T cells found in the liver of  NASH patients 
appeared to have a low Trm-like transcriptional profile and expressed genes encoding some chemokines 
usually expressed by intestinal T cells. Finally, all the different CD4+ T cell clusters found in the NASH 
patients seemed to have an overall proinflammatory transcriptomic signature characterized, for example, 
by the coexpression of  many proinflammatory cytokines.

The livers of  NASH patients were characterized by an enrichment of  CD4+ T cells with a multicytokine profile. To val-
idate the observation regarding the increased frequency of liver CD4+ T cells able to coproduce multiple cyto-
kines in NASH patients, we performed intracellular cytokine FACS staining on CD4+ T cells freshly isolated 
from the liver of 26 NAFLD and 39 NASH patients (Figure 4A, Supplemental Figure 5A, and Supplemental 
Table 3). Considering that many cytokine combinations can possibly occur, we performed a viSNE analysis 
to identify which of them are indeed present in the liver of at least either NAFLD or NASH patients (Figure 
4B). We found that different populations of multicytokine-producing CD4+ T cells are significantly enriched in 
the liver of NASH compared with NAFLD patients, namely cells coproducing TNF-α/IFN-γ, IFN-γ/IL-17A, 
IFN-γ/IL-10, TNF-α/IL-17A, TNF-α/IL-10, TNF-α/IFN-γ/IL-10, and TNF-α/IFN-γ/IL-17A (Figure 4C). 
The expression of IL-22 was low and mainly expressed by those cells expressing IL-17A. Finally, we found low 
frequencies of CD4+ T cells expressing IL-22 binding protein (IL-22BP) and a consistent frequency of CD4+ 
T cells expressing IL-4 (i.e., Th2 polarization state), but we did not see any difference between NAFLD and 
NASH patients (Supplemental Figure 5, A and B).

Then, we wanted to further test the relevance of the above-identified multicytokine-producing cells to distin-
guish between NASH and NAFLD using a random forest classifier. As reference, we used clinical parameters, 
such as transaminase levels, since they are known to discriminate between NASH and NAFLD, but still with a 
low sensitivity and specificity. By random forest machine learning, we identified the most important features to 

Figure 2. scRNA-seq of CD4+ T cells found in the liver of NASH patients. (A) Schematic of experimental setup: FACS-isolated CD45RA–CD4+ T cells (CD4+ 
T cells) from liver tissue of NASH patients were processed for scRNA-seq. (B) t-SNE plot of the unsupervised clustering of CD4+ T cells. (C) Heatmap of 
CD4+ T cell clusters displaying key signature genes to annotate the different clusters. CM1 and CM2, central memory populations 1 and 2. (D) Violin plots 
comparing the most differentially expressed genes between the central memory clusters. (E) Expression of the tissue-resident memory T cell (Trm) gene 
signature score of the indicated clusters of human CD4+ T cells. (F) t-SNE plot of the subclustering of Tr1, Th1, and Th17 clusters. (G) PCA plot of slingshot 
pseudotime developmental trajectory analysis.
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discriminate between NAFLD and NASH, which include clinical parameters as well as IL-10–, IL-17A–, and 
TNF-α–producing CD4+ T cells and IL-17A/TNF-α–coproducing CD4+ T cells (Figure 4D). Visualization by 
t-distributed stochastic neighbor embedding (t-SNE) analysis indeed showed that NAFLD and NASH patients 
segregated from each other, based on these features (Figure 4E). In line with this, using the selected features, a 
classification performance of 89% was obtained that distinguished between NAFLD and NASH patients (AUC 
= 0.89, sensitivity = 0.84, specificity = 0.83) (Figure 4, F and G). As a control, we used the clinical parameters 
alone (sex, age, BMI, and transaminase levels) or cytokine-producing cells alone, and both showed less accuracy 
(AUC = 0.79 and AUC = 0.69; Supplemental Figure 5, C and D) than when combined.

Taken together, our results show that populations of  multicytokine-producing CD4+ T cells were sig-
nificantly enriched in the liver of  the NASH patients and we were able to distinguish between NAFLD and 
NASH patients in combination with clinical parameters.

CD4+ T cells with a Th17 polarization state are enriched in the fibrotic livers of  NASH patients. We wondered 
whether the frequency of  the liver multicytokine-producing CD4+ T cells correlated with the fibrosis 
score in NASH patients. Among the different multicytokine-producing CD4+ T cells, we discovered that 
CD4+ T cells producing mainly IL-17A, but not exclusively — i.e., CD4+ T cells with a Th17 polarization 
state — were significantly enriched in the liver of  NASH patients with fibrosis compared with no fibrosis 
(Figure 5A). Furthermore, there was a correlation between the frequency of  these CD4+ T cells and the 
fibrosis score (Figure 5B).

These findings were confirmed using our scRNA-seq data set, showing that the expression of  
IL17A correlated positively with the fibrosis score in NASH patients (Figure 5C). Of  note, the accuracy  
of  the fibrosis score was confirmed by a significant positive correlation with the expression of  the pro-
fibrotic gene COL1A1 (Figure 5D).

To further confirm our findings in a different cohort of  patients, we used a publicly available human 
NASH bulk RNA-seq data set (32), and found a significant correlation between the expression of  IL17A 
and COL1A1 (Supplemental Figure 5E).

We next wondered whether the liver IL-17A–producing CD4+ T cells were in close proximity 
to liver cells that might be responsible for fibrosis, such as hepatic stellate cells and fibroblasts. We 
therefore performed immunofluorescent staining using CCR6 as marker for IL-17A–producing CD4+ 
T cells, and α-smooth muscle actin (αSMA) as marker for the cells potentially responsible for liver 
fibrosis. In the 2 nonfibrotic control livers, we observed that CCR6+ cells were very rare. In contrast, in 
the 4 patients with fibrosis, CCR6+ cells were significantly more frequent, and in most cases, they were 
located near αSMA+ structures (Figure 5, E and F).

Finally, we performed a proof-of-concept in vitro experiment to test whether the cytokine IL-17A can 
activate fibroblasts. As a positive control we used TGF-β, a key activator of  fibroblasts (33). We found that 
IL-17A might be able to activate fibroblasts, as measured by the increased gene expression of  the activation 
marker ACTA2 as compared with the untreated fibroblasts (Figure 5G).

Next, since we found the expression of  CD74 to be significantly higher within the cluster of  IL17A- 
expressing CD4+ T cells of  the NASH patients (Figure 3B), we wondered whether CD74 is also enriched in 
patients with fibrosis. In a different cohort of  patients, analysis of  CD74 expression by qPCR did indeed reveal 
a significantly higher expression in NASH patients with fibrosis compared with those without (Figure 5H).

Taken together, our results show that multicytokine-producing CD4+ T cells, mainly characterized by 
the expression of  IL-17A, are particularly enriched in the liver of  those NASH patients with fibrosis com-
pared with those without fibrosis. The role of  CD74 in this context remains to be further studied.

Characterization of  the microbiota in the small intestines and livers of  NAFLD and NASH patients. Consider-
ing the known link between CD4+ T cell function and intestinal microbiota (9), our finding regarding the 
enrichment of  multicytokine-producing CD4+ T cells in NASH patients led us to argue in favor of  a possible 

Figure 3. Differences between CD4+ T cells in the livers of NAFLD and NASH patients. (A) t-SNE plot of the unsupervised clustering of CD45RA–CD4+ T cells 
(CD4+ T cells) found in the liver of NASH and NAFLD patients. This is a combined analysis of the same data set shown in Figures 1 and 2. (B) Volcano plots 
showing the differential gene expression profiles between NAFLD and NASH of liver Tr1 and Th17 cells. (C) Real-time PCR of CD74 in total liver tissues from 
NAFLD (n = 25) and NASH (n = 32) patients. Each dot represents 1 patient. Data are presented as mean ± SEM. P value was determined by Mann-Whitney U 
test. (D) Expression of the tissue-resident memory T cell (Trm) gene signature scores of the indicated clusters of human CD4+ T cells in NAFLD and NASH. 
CM1 and CM2, central memory populations 1 and 2. (E) Frequencies of CD69+ cells within CD4+ T cells obtained using FACS. Data are presented as mean ± 
SEM. Each dot represents 1 patient. P value was determined by Mann-Whitney U test. (F) Frequencies of the indicated multicytokine-expressing CD4+ T cells 
based on the scRNA-seq data set (NAFLD n = 3, NASH n = 3). Data are presented as mean ± SEM.
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Figure 4. Liver CD4+ T cells in NASH had a distinct cytokine profile compared with NAFLD. (A) Schematic of experimental setup: CD45RA–CD4+ T cells 
(CD4+ T cells) were freshly isolated from liver tissue of NAFLD and NASH patients, restimulated in vitro, and analyzed by FACS for multiple cytokines (i.e., 
IFN-γ, TNF-α, IL-17A, IL-22, IL-22BP, IL-4, and IL-10) and the transcriptional factor FoxP3. (B) Representative t-SNE analysis of liver-infiltrating CD4+ T cells 
of 5 NASH patients. (C) Frequencies of the indicated multicytokine-producing CD4+ T cells based on FACS analysis. Each dot represents 1 patient. Data are 
presented as mean ± SEM. P values were determined by Mann-Whitney U test. (D) Top 6 features to predict NAFLD or NASH based on random forest mean 
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liver-gut axis as a reason of  the hyperactivation of  the liver T cells. To support this, instead of  analyzing the 
fecal microbiome, we directly tested (16s rDNA sequencing) the composition of  the tissue-specific microbi-
ome of  both livers (n = 50) and small intestines (n = 19) of  the NAFLD and NASH patients (Figure 6A).

We first confirmed the presence of  bacteria in the liver of  both NAFLD and NASH patients (34) (Sup-
plemental Figure 6A). Second, we examined differences in the microbiome structure between the liver and 
small intestine across NAFLD and NASH patients by principal coordinate analysis (PCoA) of  Bray-Curtis 
distance (Supplemental Figure 6A). The analysis revealed similar microbial communities within NASH 
and NAFLD patients. Furthermore, the within-sample diversity (α-diversity, Shannon’s diversity) did not 
differ between different disease conditions (Supplemental Figure 6B). To adjust for interpatient variability, 
we next analyzed paired liver and small intestine samples, and observed that the microbial composition 
between NAFLD and NASH patients did not differ (Figure 6B).

Next, we explored the community structure at the genus level and found that some bacteria were pres-
ent in both the small intestine and liver of  patients (Figure 6C). In addition we observed that Bacteroides 
were significantly enriched in the small intestine of  the NASH patients (Figure 6, D and E). Bacteroides 
were also present in the liver tissue, but there were no significant differences in genus abundances between 
NAFLD and NASH in our cohort of  patients (Figure 6D).

Finally, we wondered whether the relative amount of  Bacteroides correlated with an enrichment in the 
multicytokine-producing CD4+ T cells.

First, we performed intracellular cytokine FACS staining on CD4+ T cells from the small intestine of  
15 NAFLD and 10 NASH patients, as previously performed for the liver CD4+ T cells. Despite the fact 
that the data did not show any statistical significance, we observed that there was an enrichment of  cells 
coexpressing cytokines in the intestine of  NASH patients compared with NAFLD (Supplemental Figure 
6, C and D). Second, we tested for a possible correlation between multicytokine-producing CD4+ T cells in 
the liver and small intestine and Bacteroides abundance in NASH patients. Despite the low number of  sam-
ples analyzed, we observed a significant positive correlation between the frequency of  liver CD4+ T cells 
coproducing TNF-α/IFN-γ and IFN-γ/IL-10 and liver Bacteroides abundance in 3 patients (Figure 6F), and 
only by trend between intestinal CD4+ T cells coproducing TNF-α/IFN-γ and IFN-γ/IL-10 and intestinal 
Bacteroides abundance (Supplemental Figure 6E).

In short, these data showed the presence of  some of  the intestinal bacteria in the liver of  both NAFLD 
and NASH patients, but the composition of  the liver microbiota did not differ between the 2 disease stages.  
In contrast, Bacteroides appeared to be enriched in the mucosal layer of  the small intestine of  NASH 
patients. The analysis of  the Bacteroides is limited by the low number of  patients analyzed (n = 8); however, 
the results are in line with what has been previously published by sequencing the stool of  NASH patients 
(34). Finally, a possible correlation seems to be present between the frequency of  multicytokine-producing 
liver CD4+ T cells and Bacteroides. Whether these data support a liver-gut axis and could be the reason for 
the accumulation multicytokine-producing liver CD4+ T cells can only be hypothesized.

Discussion
By providing an unsupervised analysis, our study shows for the first time to our knowledge that the progres-
sive inflammatory development behind the transition from NAFLD to NASH is not associated with only 
classical CD4+ Th cell subsets, as previously suggested (6, 30, 35, 36), but rather with a larger spectrum of dif-
ferent subsets, including multicytokine-producing cells that might represent in-between developmental stages.

Using fate-mapping mouse models, we have previously shown that Th17 cells can either have a proin-
flammatory fate, participating in a pathological immune response, or an antiinflammatory fate, contrib-
uting to the resolution of  the immune response (27, 28). Here, by combining an unsupervised transcrip-
tional profiling and multiparameter flow cytometric analyses, we describe a dynamic interconnection 
among CD4+ T cells with Th1, Th17, and Tr1 cell states. Moreover, we show that there is a more chaotic  
developmental path with different pathogenic endpoints and an increase in multicytokine-producing  
CD4+ T cells in NASH patients that could be one of  the causes of  the chronic liver inflammation typical 

decrease in Gini score (GOT: glutamic oxaloacetic transaminase; GPT: glutamic-pyruvic transaminase). (E) t-SNE visualization plot of NAFLD and NASH 
patients based on the previously indicated top 6 features of prediction. Each dot represents 1 patient. (F) Receiver-operating characteristic curve showing 
true- and false-positive rates (TPR and FPR, respectively) for the discrimination between NAFLD and NASH prediction based on the top 6 features of 
prediction. (G) Precision and recall plot for prediction based on indicated top 6 features of prediction.
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of  these patients. However, since our findings are based on a descriptive set of  analyses, further experi-
ments using, for example, fate-mapping mouse models are needed to confirm the possible developmental 
interconnection among liver CD4+ T cells.

Within the CD4+ T cells with Th17, Th1, and Tr1 polarization states and Foxp3+ Treg cells we found 
CD74 to be enriched in NASH patients and in those characterized by fibrosis. CD74 is usually not known 
to be expressed on T cells, but it was previously reported to regulate proliferation, survival, and secretion 
of  inflammatory cytokines, after activation by MIF (37–39). In a mouse model of  chronic liver injury, 
CD74-deficient mice were protected from liver fibrosis (39). Therefore, CD74 could be a potential novel 
target to disrupt NASH progression and development of  fibrosis, by using an anti-CD74 antibody such as 
milatuzumab (also known as hLL1), for example (40, 41). Investigating CD4+ T cell–specific CD74 abla-
tion would determine whether CD74 on T cells is involved in NASH and fibrosis.

The role of  Trm cells in the development of  NASH is largely unknown. We showed that the percentage 
of  cells with a Trm gene signature and phenotype is higher in NAFLD than in NASH patients. This finding 
was confirmed using a different cohort of  patients from a previously published data set (19). Considering all 
these data together, a possible working hypothesis is that CD4+ T cells found in the liver of  NASH patients 
have a more circulatory nature compared with those found in the NAFLD livers. In addition, considering 
the expression of  some chemokine receptors typical of  intestine-derived T cells, we speculate that the multi-
cytokine-producing liver CD4+ T cells had previously been activated in mucosa-associated lymphoid tissue 
or in the intestine and then migrate through the liver.

In line with this, emerging evidence indicates that intestinal dysbiosis has a significant role in the 
pathogenesis of  human liver diseases. Dysbiosis was shown to associate with intestinal permeability 
(42) and consequently lead to translocation of  microorganisms and microorganism-derived molecules 
into the liver (14, 43). Using 16s rRNA gene sequencing of  fecal samples, Boursier et al. found that 
the bacterial genera Bacteroides and Ruminococcus were substantially higher, and Prevotella was lower in 
patients with NASH compared with those without NASH (12). Moreover, Sookian et al. showed that 
the liver tissue of  NAFLD patients contains a diverse repertoire of  bacterial DNA that differs between 
morbidly obese and non–morbidly obese NAFLD patients (14). Here, we investigated for the first time 
to our knowledge the tissue-specific microbiome of  both the liver and small intestine within NASH and 
NALFD morbidly obese patients. Our data confirm the presence of  intestinal microbiota in the liver 
of  both NAFLD and NASH patients. However, within the liver tissue of  morbidly obese NAFLD and 
NASH patients, the microbial communities were similar. Because obesity was shown to be an import-
ant driver of  liver microbial DNA composition (14), this might explain the difference between — but 
not within — morbidly obese and non–morbidly obese patients. In contrast, investigating the microbial 
composition of  the intestinal mucosal layer, our data suggest that Bacteroides might be enriched in the 
small intestine of  some morbidly obese NASH patients. This is in line with studies showing an increase 
in Bacteroides abundance in stool samples of  NASH patients (12). Interestingly, some of  the patients with 
elevated levels of  Bacteroides in the liver also displayed elevated percentages of  multicytokine-producing 
CD4+ T cells, above median levels. We here speculate that in NASH patients, the abundance of  some 
intestinal bacteria (e.g., Bacteroides) might predispose T cells to a possible dysfunctional activity. Inter-
estingly, upon potential migration to the liver, these T cells find some of  the intestinal bacteria, which in 
combination with a fat-enriched environment might unleash the predisposition of  T cells to secrete many 
cytokines simultaneously participating in the development of  NASH.

Figure 5. IL-17A–producing CD4+ T cells were enriched in the liver of NASH patients with fibrosis. (A) Comparison of the FACS analysis of the frequen-
cies of the indicated multicytokine-producing CD4+ T cells isolated from the NASH patients with and without fibrosis (same cohort as in Figure 4). Each 
dot represents 1 patient. Data are presented as mean ± SEM. P values were determined by Mann-Whitney U test. NS, not significant (P > 0.05). (B–D) 
Correlations between fibrosis score and (B) frequencies of liver IL-17A–producing CD4+ T cells obtained by FACS, (C) IL17A expression obtained form the 
scRNA-seq data set, and (D) COL1A1 expression obtained from real-time PCR of total liver tissue of NASH patients undergoing bariatric surgery. The 
COL1A1 expression is normalized to HPRT expression. P values were calculated with Pearson’s correlation coefficient. (E) Immunofluorescent staining 
of the livers of patients with fibrosis (patients 1, 2, and 3) and without fibrosis (control 1 and 2). αSMA in cyan, CCR6 in orange, and DRAQ5 in far red for 
nuclei. (F) Frequency of CCR6+ cells per field of view (FOV). Each dot represents the number of CCR6+ cells per FOV. Data are presented as mean ± SEM. 
P value was determined by unpaired t test with Welch’s correction. (G) Real-time PCR of ACTA2 in fibroblasts either left untreated or stimulated in vitro 
with TGF-β (10 ng/mL) and IL-17A (150 ng/mL) for 24 hours. Data are a pool of 2 independent experiments and each dot represents the ACTA2 expression 
obtained from each culture well. Data are presented as mean ± SEM. P values were determined by unpaired 1-way ANOVA test. (H) Real-time PCR of 
CD74 in liver tissues of NASH patients with and without fibrosis. The CD74 expression is normalized to HPRT expression. Each dot represents 1 patient. 
Data are presented as mean ± SEM. P value was determined by Mann-Whitney U test.
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Finally, we report the persistence of  CD4+ T cells with a Th17 polarization state in the develop-
ment of  fibrosis. In line with this, we also found a positive correlation between mRNA expression 
of  IL17A and COL1A1 in a publicly available human bulk RNA-seq data set (32). Interestingly, cells 
producing IFN-γ, IL-10, and TNF-α were not enriched in patients with fibrosis, suggesting that these 
cytokines might be relevant during acute inflammation, but not for the progression to fibrosis. In mice, 
the inhibition of  IL-17A showed reduced mRNA levels of  profibrogenic genes, such as COL1A1, and 
a reduced degree of  liver fibrosis (29). In different types of  chronic liver diseases, such as autoimmune 
hepatitis (AIH) or alcoholic liver disease, the frequency of  IL-17A–producing cells and the expression 
of  Th17-related cytokines were also significantly elevated (44). Furthermore, the duration and severity 
of  hepatitis were suggested to be dependent on Th17 cells in AIH (45). Therefore, all these findings 
suggest that IL-17A can play a role in the development of  chronic liver diseases.

Nevertheless, the overall descriptive nature of  our study does not allow us to firmly conclude on a 
causal link between IL-17A and liver fibrosis in patients. Indeed, one of  the main limitations of  our study 
is the lack of  functional experiments using, for example, NASH mouse models. These have been developed 
over recent decades thanks to different types of  diets. One of  the most commonly used is the methionine/ 
choline-deficient (MCD) diet, which is known to induce NASH-typical histological features in the liver; 
nevertheless, it has the great limitation of  causing weight loss in mice and does not result in the devel-
opment of  insulin resistance and obesity-related comorbidities (46). An alternative to the MCD diet is 
the Western diet (WD), which mimics the fast-food diet, characterized by high fat, high cholesterol, and 
high fructose content with and without trans fat (47, 48). Unlike the MCD diet, the WD induces the pro-
gression to NASH through obesity, but requires a longer feeding time (49). A choline-deficient L-amino  
acid–defined, high-fat diet (CD-HFD) is a combination of  the 2 diets and allows for faster development 
of  NASH yet maintains the obesity-related phenotype (47, 48, 50). These WD-mediated models are most 
likely the best models at the moment and using these to further test the role of  multicytokine-producing 
CD4+ T cells could be considered for future studies.

Another limitation of our study is that, since we decided to focus on memory CD4+ T cells, we excluded 
other cell populations from the scRNA-seq analysis, such as Temra cells, and could not explore their role in 
the pathogenesis of NASH. Future studies may further investigate the role of these cell subsets in this context.

In conclusion, this descriptive study provides the first single-cell-based atlas to our knowledge of  CD4+ 
T cells in NASH and NALFD patients. This resource can be further explored for future studies, but already 
suggests that targeting multicytokine-producing CD4+ T cells can represent a new therapeutic target for 
NASH patients using, for example, depleting monoclonal antibodies, antibiotics, or probiotic treatments.

Methods
Patient samples. Fresh samples used in the study were obtained from patients undergoing bariatric surgery 
and simultaneous liver biopsy at the University Medical Center Hamburg-Eppendorf. Corresponding small 
intestine and liver biopsy samples were obtained during gastric bypass surgery. None of  the patients suffered 
of  any diseases of  the digestive tract (Supplemental Table 3). Liver samples were 1 × 1 cm and small intestine 
samples were 3 × 3 cm in size. Histopathological analysis to determine the NAFLD Activity Sore (NAS) and 
the fibrosis score was performed by a senior specialist in gastrointestinal pathology at the University Medical 
Center Hamburg-Eppendorf. The NAS score was based on ballooning, inflammation, and steatosis level. 
Liver and small intestine samples were processed for FACS analysis and scRNA-seq, as described below.

T cell isolation. Intraepithelial lymphocytes from the small intestine were incubated in HBSS contain-
ing 1 mM dithioerythritol, followed by a dissociation step using 1.3 mM EDTA at 37°C for 30 minutes. 
Intraepithelial and lamina propria lymphocytes were isolated by digesting the tissue in HBSS (with Ca2+ 
and Mg2+) with collagenase (1 mg/mL) and DNase I (10 U/mL) at 37°C for 45 minutes. The cells were 
further separated using a Percoll gradient (GE Healthcare).

Figure 6. Characterization of the microbiota in the small intestines and livers of NAFLD and NASH patients. (A) Schematic of experimental setup: 
Microbiota isolated from liver and small intestine (SI) was subjected to 16s rRNA sequencing. (B) PCoA plot showing the differences of microbial  
β-diversity between NAFLD and NASH, in the livers and SI. Each dot represents 1 patient. P value was calculated with the PERMANOVA test. (C) 
Differential abundance of bacteria in NAFLD and NASH patients (P) in liver and SI. (D) Proportional abundance of Bacterioides in liver and SI of NAFLD 
and NASH patients. P values were determined by the fitFeatureModel from the R package metagenomeSeq. (E) LEfSe analysis of the bacterial species 
enriched in the SI of 11 NAFLD and 8 NASH patients. LDA, logarithmic discriminant analysis. (F) Correlation between Bacteroides abundance and fre-
quency of the indicated T cell populations in the liver. Each dot represents 1 patient. P values were calculated with Pearson’s correlation coefficient.
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Flow cytometry. Briefly, after immune cell isolation using a Percoll gradient, cells were restimulated with 
PMA/ionomycin and monensin for 3 hours and stained (for antibody panel and clones, see Supplemental 
Table 4). Samples were acquired on an LSR II flow cytometer (BD Bioscience) and analyzed using Flowjo. 
Additionally, data were also analyzed using the Cytobank platform (viSNE analysis).

Real-time PCR. Total RNA was extracted from liver tissue using TRIzol reagent (Invitrogen). The 
high-capacity cDNA synthesis Kit (Applied Biosystems) was used for cDNA synthesis. Real-time PCR 
was performed using the Kapa Probe Fast qPCR Master Mix (Kapa Biosystems) on the StepOnePlus sys-
tem (Applied Biosystems). Probes used were HPRT1 (Hs02800695_m1), CD74 (HS00269961_m1), COL1A1 
(Hs00164004_m1), and ACTA2 (Hs00909449_m1) (all from Thermo Fisher Scientific). Relative RNA 
expression was normalized to HPRT and calculated using the 2−ΔΔCt method.

Immunofluorescence. Immunofluorescence was performed using standard protocols for human specimens 
(51, 52); we used a combination of  anti-CCR6 (R&D Systems, MAB195-SP) and anti-αSMA (Merk, F3777-
.2ML). After immunolabeling, images were obtained using a laser confocal microscope (LSM800, Zeiss).

In vitro experiment with fibroblasts. Primary fibroblasts were isolated from the preputium, obtained in a 
circumcision, from an anonymous donor after confirmed consent of  the patient and/or his parents at the 
dermatology department of  the University Medical Center Hamburg-Eppendorf. The tissue was minced 
and pieces were incubated untouched with RPMI (containing 10% FBS, 1% L-glutamine, and 1% penicillin- 
streptomycin, all from Gibco) in a 25 cm2 cell culture flask (Sarstedt) for 6 days at 37°C and 5% CO2. 
After that, media were changed and cells were trypsinized with Trypsin/EDTA (0.05%/0.02%, Gibco) 
and passaged at a density of  60%–80% at a rate of  1:3. Cryopreservation was done with cell culture 
media and 10% DMSO. Cells were thawed, cultured, and passaged via trypsinization upon reaching 80% 
confluence, according to standard protocols. For the in vitro experiment, 2 mL of  a 2.5 × 104/mL HFF 
(Human Foreskin Fibroblasts) cell suspension in complete RPMI medium were seeded in each well of  
two 6-well plates and cultured under 5% CO2 atmosphere in a standard 37°C humidified CO2 incubator. 
The cells were monitored daily via light microscopy, and upon reaching 80% confluence their media were 
replaced with 2 mL fresh complete RPMI medium containing 10 ng/mL human TGF-β1 and 150 ng/mL  
human IL-17A in duplicate. Two wells containing 80% confluent HuFu cells were also left untreated. The 
cells were incubated with the cytokines for an additional 24 hours under 5% CO2. Next, the cells were 
washed twice with PBS, scraped from the plate using a cell scraper, and centrifuged at 500g for 5 minutes 
at 4°C using a table-top microcentrifuge. The supernatant was discarded and the cell pellets were lysed 
with TRIzol and passed through a Qiagen RNeasy mini column followed by on-column DNase digestion 
(to remove genomic DNA) for total RNA purification. RNA samples (0.5 μg each) were subjected to first 
cDNA synthesis with oligoDT primer using the RevertAid H minus First-Strand cDNA Synthesis Kit 
(Thermo Fisher Scientific) according to the manufacturer’s instructions in a volume of  20 μL. Next, the 
first-strand synthesis reaction was diluted with sterile H2O to 100 μL total volume and 2 μL of  each reac-
tion was used as a template for qPCR using Taqman Gene Expression Master Mix (Applied Biosystems) in 
a total reaction volume of  10 μL, using the following Taqman probes: ACTA2 (Hs00426835_g1), COL1A1 
(Hs00164004_m1), HPRT1 (Hs03929098_m1), TGFB1 (Hs0098133_m1), and TBP (Hs00427620_m1) (all 
from Thermo Fischer Scientific), in a 384-well Image QuantStudio qPCR controller (Applied Biosystems) 
in standard Taqman reactions. The results were exported from the controller as.xls files and the raw data 
were analyzed in Microsoft Excel spreadsheets using the 2–ΔΔCt method. The whole experimental proce-
dure was performed in triplicate. The analyzed data are presented herein as z scores.

scRNA-seq: cDNA library preparation. The sorted cellular suspension was loaded on a 10× Genomics 
Chromium instrument to generate single-cell gel beads in emulsion (GEMs). scRNA-seq libraries were pre-
pared as described by the 10× Genomics Single Cell 3′ v2 Reagent Kit user guide and using the following 
reagent kits: Chromium Single Cell 3′ Library & Gel Bead Kit v2 (PN-120237), Chromium Single Cell A 
Chip Kit (PN-120236), and Chromium i7 Multiplex Kit (PN-120262). Data were uploaded to the NCBI 
Gene Expression Omnibus database (GEO GSE217235).

scRNA-seq: preprocessing and quality control. 10× Genomics raw sequencing data were processed using 
CellRanger software (v2.1.0, 10× Genomics) and the 10× human genome GRCh38 1.2.0 release as the 
reference (function cellranger count). The matrices of  cells and the unique molecular identifier (UMI) 
count were obtained and further processed by the R package Seurat (v3.0.2) (53). In order to avoid poten-
tial contamination of  non–T cells during sorting, only cells with an average count of  CD3D, CD3E, and 
CD3G higher than 0 were kept for further analysis.
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scRNA-seq: dimensionality reduction and clustering. To reduce sample batch effects, we applied the integration 
method implemented in Seurat v3 (functions FindIntegrationAnchors and IntegrateData, dims = 1:30). The 
integrated matrix was then scaled with the ScaleData function (default parameters). Principal component anal-
ysis (PCA) was performed on the scaled data (function RunPCA, npcs = 30) to reduce dimensionality. The 
selected principal components were then used to compute the KNN graph based on the Euclidean distance 
(function FindNeighbors). Cell clusters were subsequently generated using the function FindClusters. The res-
olution of the FindClusters function was determined by exploration of the top marker genes of each cluster.

The Seurat R package (v3.0.2) was used to perform unsupervised clustering analysis on scRNA-seq 
data. t-SNE was used to visualize clustering results. The top differentially expressed genes in each cluster 
were found using the FindAllMarkers function (min.pct = 0.25, logfc.threshold = 0.25) that ran Wilcoxon’s 
rank-sum tests. The differential expression between conditions (NASH vs. NAFLD) were calculated by the 
FindMarkers function (min.pct = 0.1), which also ran Wilcoxon’s rank-sum tests.

scRNA-seq: cell type annotation. We determined the cell populations by examining the most differen-
tially expressed genes of  each population and comparing our data set with standard markers used in 
flow cytometry and already existing sequencing data of  cells in the liver (15–18). For Trm and Tr1 cells, 
which have less-well-defined markers, we generated scores based on different gene sets. Average expres-
sion levels of  the Trm gene set (Trm score) and Tr1 gene set (Tr1 score) (Supplemental Table 5) were 
calculated using Seurat function (24) AddModuleScore (nbin = 24, ctrl = 100). Trm signature genes were 
obtained from the study of  sorted CD69+CD4+ and CD69–CD4+ T cells of  the lung, spleen, and blood 
(26). Tr1 signature genes were first selected from the study of  mouse Tr1 cells (16) and then converted 
to corresponding human genes using the getLDS function from the biomaRt package (v2.40.3; https://
bioconductor.org/packages/release/bioc/html/biomaRt.html).

scRNA-seq: trajectory analysis. The slingshot R package (v1.3.2) (54) and the Monocle 3 R package 
(v1.2.9) (55) were used for trajectory analysis. For the slingshot analysis, the Seurat objects of  the select-
ed clusters were first converted to SingleCellExperiment object (function as.SingleCellExperiment). 
Then, function slingshot (reducedDim = “PCA”) was used to identify the global lineage structure with 
a cluster-based minimum spanning tree (MST) and fit simultaneous principal curves to describe each 
lineage. The pseudotime of  each cell was also obtained in this step and then visualized by ggplot R 
package (v3.2.1). For the Monocle analysis, the function learn_graph (default parameters) was used to 
fit a principal trajectory within the t-SNE plot of  the cells.

Integrated analysis with external scRNA-seq data. The scRNA-seq data set (19) was downloaded from 
NCBI GEO via accession number GSE136103. The sample integration, dimensionality reduction, cluster-
ing, and cell type annotation methods were the same as described above. The CD4+ T cell count matrices 
were extracted using the subset function after integration and clustering with Seurat R package (v3.0.2).

Correlation analysis of  external bulk RNA-seq data. The human liver bulk RNA-seq data set (31) was 
downloaded from the NCBI BioProject via accession number PRJNA512027. The raw reads were 
aligned to the human reference genome (GRCh38) using the RSEM (v1.3.0) pipeline with default param-
eters. The function rsem-calculate-expression was used to align the reads and quantify the gene and iso-
form abundance. The output of  rsem-calculate-expression separately gives the read count and transcripts 
per million (TPM) value for each gene and isoform. The correlation of  TRM counts from samples were 
calculated in R (v4.1.1) with cor.test function.

Random forest. To determine the set of  most discriminative features, we used a random forest binary 
classification algorithm, implemented in the randomForest R package (v4.6-14). Performance measures 
like AUC, sensitivity, specificity, recall, and precision were calculated using caret (v6.0-79) and ROCR 
(v1.0-7) R packages. The analysis was performed using R v3.4.1.

16s rRNA gene metagenomic sequencing of  liver and small intestine tissues. First, a host DNA depletion by 
osmotic lysis in distilled water, followed by PMA treatment was conducted according to Marotz et al. (56). 
Next, bacterial DNA was extracted using the PowerMag Microbiome DNA isolation kit (Qiagen) follow-
ing the manufacturer’s instructions. DNA libraries were constructed, and high-throughput sequencing was 
performed on a MiSeq platform (Illumina). A negative control was used to test the potential presence of  
contaminant DNA; the sample showed no product.

16S rRNA sequence data analysis. Raw fastq files were checked for overall data quality using FastQC 
(v0.11.5; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). All further preprocessing and 
analysis steps were performed in R (v3.6.0).
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We used the dada2 (57) (v1.12.1) package to generate amplicon sequence variants (ASVs) by  
following the authors recommended processing steps for paired sequencing data. In brief, all reads 
were first run through quality filtering using the fastqPairedFilter function with default options, 
except for the number of  truncated base pairs per read where we used 180 bp and 150 bp, respectively.  
Additionally, reads with more than 2 expected errors were removed. On average, 67.8% of  input reads 
were kept after all filtering steps. Lastly, we removed any ASVs that were observed in fewer than 1% 
of  the samples.

Taxonomic assignment was performed using the DECIPHER (58) (v2.12.0) package against the  
SILVA SSU database (release 132; https://www.arb-silva.de/documentation/release-132/; accessed 
March 2018). All further analysis was performed within the phyloseq framework (v1.32.0). Due to widely  
differing sequencing depth and subsequently differing number of  ASV counts (4–15.757; median, 557) 
we decided to rarefy our data. After inspecting rarefaction curves we filtered out all samples with fewer 
than 500 counts and rarefied all remaining samples to an ASV count of  500.

To perform the linear discriminant analysis effect size (LEfSe) we used proportional abundances at the 
genus level and tried normalization factors of  10,000 and 1,000,000 in the LEfSe format_input step.

Alpha diversities were calculated using the estimate_richness function. Bray-Curtis distances were 
calculated using the distance function and differences between the resulting distance matrices were 
analyzed using PERMANOVA with the adonis function from the vegan package (v2.5.6; https://
cran.r-project.org/src/contrib/Archive/vegan/vegan_2.5-6.tar.gz), again using categorized age and 
BMI covariates. Differential abundance in ASV counts was assessed using the metagenomeSeq package 
(59) (v1.30.0). The differential abundance threshold was set to FDR less than 0.05 and an absolute log(-
fold change) (logFC) greater than 0.5.

Statistics. For nontranscriptomic data, 2-tailed Mann-Whitney U test, Wilcoxon’s test, unpaired t test 
with Welch’s correction, or 1-way ANOVA with Tukey post hoc test was used to calculate significance, 
where applicable. Statistical calculations were performed using Prism 5.0 (GraphPad Software). Statistical 
significance was set to P less than 0.05.

Study approval and ethics statements. The study was approved by the Ethics Committee of  Hamburg 
and the study protocol was conformed to the ethical guidelines of  the 1975 Declaration of  Helsinki. 
Written informed consent was obtained from all patients and experiments were carried out in accordance 
with all relevant ethical regulations.
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